A Multivariate Artificial Neural Network Approach for Rainfall Forecasting: Case Study of Victoria, Australia
نویسندگان
چکیده
El Nino southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) have enormous effects on the precipitations around the world. Australian rainfall is also affected by these key modes of complex climate variables. Many studies have tried to establish the relationships of these large-scale climate indices among the rainfalls of different parts of Australia, particularly Western Australia, New South Wales, Queensland and Victoria. Unlike the other regions, no clear relationship can be found between each individual large-scale climate mode and Victorian rainfall. Past studies considering southeast Australian rainfall predictability could achieve a maximum of 30% correlation. This study looks into the lagged-time relationships of these modes on Victorian spring rainfall. On the other hand, few attempts have been made to establish the combined effect of these indices on rainfall in order to develop a better understanding and forecasting system. Since rainfall is a complicated atmospheric phenomenon, linear techniques might not be sufficient enough to capture its characteristics. This research attempts to find a nonlinear relationship between the Victorian rainfall and the lagged-indices affecting the region using Artificial Neural Networks (ANN). It was discovered that ANN modelling is able to provide higher correlations using the lagged-indices to forecast spring rainfall in compared to linear methods. Using these indices in an ANN model increased the model correlation up to 99%, 98% and 43% for the three case study stations of Horsham, Melbourne and Orbost in Victoria, Australia respectively. it seems that IOD has a higher effect on the centre and west of Victoria more than the ENSO, while ENSO seems to have a stronger effect on the east side. This method can be used for other parts of the world where a relationship exists between rainfall and large scale climate modes which could not be established by linear methods.
منابع مشابه
Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملArtificial neural network technique for rainfall temporal distribu-tion simulation (Case study: Kechik region)
Artificial neural networks (ANNs) have become one of the most promising tools for rainfall simulation since a few years ago. However, most of the researchers have focused on rainfall intensity records as well as on watersheds, which generally are utilized as input records of other hydro-meteorological variables. The present study was conducted in Kechik station, Golestan Province (northern Iran...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کامل